【解説】【MQL5 community】 Price prediction by Nearest Neighbor : 過去のk個の価格の列と現在の価格の列の最も似たものを探し、 将来の価格を予測するというもの。 ここでのアルゴリズムはPearson correlation coefficientを使用し、データの類似性を調べる。
//+--------------------------------------------------------------------------------------+ //| Nearest_Neighbor.mq5 | //| Copyright 2010, gpwr | //+--------------------------------------------------------------------------------------+ #property copyright "gpwr" #property version "1.00" #property description "Prediction of future based on the nearest neighbor in the past" #property indicator_chart_window #property indicator_buffers 2 #property indicator_plots 2 //--- future model outputs #property indicator_label1 "NN future" #property indicator_type1 DRAW_LINE #property indicator_color1 Red #property indicator_style1 STYLE_SOLID #property indicator_width1 1 //--- past model outputs #property indicator_label2 "NN past" #property indicator_type2 DRAW_LINE #property indicator_color2 Blue #property indicator_style2 STYLE_SOLID #property indicator_width2 1 //Global constants #define pi 3.141592653589793238462643383279502884197169399375105820974944592 //===================================== INPUTS =========================================== input int Npast =300; // # of past bars in a pattern input int Nfut =50; // # of future bars in a pattern (must be < Npast) // Global variables int bars,PrevBars; double mx[],sxx[],denx[]; bool FirstTime; // Indicator buffers double ynn[],xnn[]; // Custom indicator initialization function ---------------------------------------------+ void OnInit() { // Initialize global variables PrevBars=Bars(_Symbol,_Period)-1; FirstTime=true; // Map indicator buffers SetIndexBuffer(0,ynn,INDICATOR_DATA); SetIndexBuffer(1,xnn,INDICATOR_DATA); IndicatorSetInteger(INDICATOR_DIGITS,_Digits); IndicatorSetString(INDICATOR_SHORTNAME,"1NN("+string(Npast)+")"); PlotIndexSetInteger(0,PLOT_SHIFT,Nfut); } //====================================== MAIN ============================================ int OnCalculate(const int rates_total, const int prev_calculated, const datetime& Time[], const double& Open[], const double& High[], const double& Low[], const double& Close[], const long& tick_volume[], const long& volume[], const int& spread[]) { // Check for insufficient data and new bar int bars=rates_total; if(bars<Npast+Nfut) { Print("Error: not enough bars in history!"); return(0); } if(PrevBars==bars) return(rates_total); PrevBars=bars; // Initialize indicator buffers to EMPTY_VALUE ArrayInitialize(xnn,EMPTY_VALUE); ArrayInitialize(ynn,EMPTY_VALUE); // Main cycle ---------------------------------------------------------------------------+ // Compute correlation sums for current pattern // Current pattern starts at i=bars-Npast and ends at i=bars-1 double my=0.0; double syy=0.0; for(int i=0;i<Npast;i++) { double y=Open[bars-Npast+i]; my +=y; syy+=y*y; } double deny=syy*Npast-my*my; if(deny<=0) { Print("Zero or negative syy*Npast-my*my = ",deny); return(0); } deny=MathSqrt(deny); // Compute correlation sums for past patterns // Past patterns start at k=0 and end at k=bars-Npast-Nfut ArrayResize(mx,bars-Npast-Nfut+1); ArrayResize(sxx,bars-Npast-Nfut+1); ArrayResize(denx,bars-Npast-Nfut+1); int kstart; if(FirstTime) kstart=0; else kstart=bars-Npast-Nfut; FirstTime=false; for(int k=kstart;k<=bars-Npast-Nfut;k++) { if(k==0) { mx[0] =0.0; sxx[0]=0.0; for(int i=0;i<Npast;i++) { double x =Open[i]; mx[0] +=x; sxx[0]+=x*x; } } else { double xnew=Open[k+Npast-1]; double xold=Open[k-1]; mx[k] =mx[k-1]+xnew-xold; sxx[k]=sxx[k-1]+xnew*xnew-xold*xold; } denx[k]=sxx[k]*Npast-mx[k]*mx[k]; } // Compute cross-correlation sums and correlation coefficients and find NN double sxy[]; ArrayResize(sxy,bars-Npast-Nfut+1); double b,corrMax=0; int knn=0; for(int k=0;k<=bars-Npast-Nfut;k++) { // Compute sxy sxy[k]=0.0; for(int i=0;i<Npast;i++) sxy[k]+=Open[k+i]*Open[bars-Npast+i]; // Compute corr coefficient if(denx[k]<=0) { Print("Zero or negative sxx[k]*Npast-mx[k]*mx[k]. Skipping pattern # ",k); continue; } double num=sxy[k]*Npast-mx[k]*my; double corr=num/MathSqrt(denx[k])/deny; if(corr>corrMax) { corrMax=corr; knn=k; b=num/denx[k]; } } Print("Nearest neighbor is dated ",Time[knn]," and has correlation with current pattern of ",corrMax); // Compute xm[] and ym[] by scaling the nearest neighbor double delta=Open[bars-1]-b*Open[knn+Npast-1]; for(int i=0;i<Npast+Nfut;i++) { if(i<=Npast-1) xnn[bars-Npast+i]=b*Open[knn+i]+delta; if(i>=Npast-1) ynn[bars-Npast-Nfut+i]=b*Open[knn+i]+delta; } return(rates_total); }
【表示結果】
Back to Meta Trader