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OUR CONTRIBUTIONS

® This study formulates evolutionary game theory with a new

concept using statistical mechanics.

— We add new parameter (y: optimal choice behavior).

e Model:
[sing model ... nearest—neighbor interaction
SK model ... random matching interaction

® The emergence of the equilibrium using “Phase Transition(#H
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® Numerous papers published have used statistical mechanics in
game theory:

® Blume[1], Diedeich and Opper [5], McKelvey and Palfrey [9,
10]

® These papers applied the [sing model and standard SK model

in a straightforward manner.

® This study presents a novel model using statistical mechanics
for evolutionary game theory with basic elements.
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* Blume (GEB, 1993) , McKelvey and Palfrey (GEB,
1995, JER, 1996)

— Ising model.

* Diederich and Opper(PRA,1989)
— SK model (Spin Glass)

Contribution:

SK model : Lyapunov function (fitness function)
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4 Interpretation of Nash Equilibrium
(J.F.Nash’s Ph D. Thesis)

» o

* 1."Rationality * * the players are perceived as rational
and they have complete information about the structure of the
game, including all of the players’ preferences regarding
possible outcomes, where this information about each other’s
strategic alternatives and preferences, they can also compute
each other’s optimal choice of strategy for each set of
expectations. If all of the players expect the same Nash
equilibrium, then there are no incentives for anyone to change

his strate gy.

@ (SOURCE :Press Release —The Royal Swedish Academy of Sciences, 11 October 1994)
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RANDOM INTERACTION (SK MODEL)
Diederich and Opper(1989)

o Replicator Eq.:

dd—xt“—xv(f _1), for v=1--- N,

® Fitness Function: f=—H = ZXVCW T

o
ox,
the Random Matrix , it is Gauss Distribution, Average is 0,
Variance i1s 1/N.

where, T, = C " (,u 7 V) This is a element of
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We obtain the following Equations with Replica method in a
Quenched System.

U—v= ~NA dze‘zz’z(z +A),

Vor -

(u—v)2=%jﬁidze22’2(2+A)2,Where A=.Jq(u—2v)
B

V2,

0.8

Competitive

(I

0.5 —%

Cooperative | ©0:2-
T+ 11 o.oq ; ; , , , ~ Parameter u

0.0 0.5 1.0 ) 2.0 2.5 3.0
(- V2. y

0.6




4 N

We obtain the following Equations with Replica method in a
Quenched System.
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THEORY™ ?

In 1973 Maynard Smith formalized a central concept
In game theory called the evolutionary stable strategy
(ESS), based on a verbal argument by G.R.Price. This
area of research culminated in his 1982 book
=volution and the Theory of Games. The Hawk-Dove
game is arguably his single most influential game
theoretical model.

ASSUMPTION:

Large Number of Population (randomly matched) ,
Monotone (the strategy with higher payoff increases
Its shares)

(-

WHAT IS © EVOLUTIONARY GAME |

Evolution
and the
Theory of
Games
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Situation (Traditional Evolutionary Game Theory)
At Random (infinitely)
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expected utility x Ax, the probability of the action i is higher than
before.
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" REVIEW: Replicator Equation

I?EPLICATOR EQ. )Zi =X ((AX)I — X A)(),| =1--..

, N.

If the player's payoff from the outcome i is greater than the
expected utility x Ax, the probability of the action i is higher than
before. And this equation shows that the probability of the action i
chosen by another players is also higher than before (externality).
Furthermore, the equation is derived uniquely by the monotonic
(that is If one type has increased its share in the population then all
types with higher profit should also have increased their shares).

Two Strategies [ .

X=X(1-x){b—-(a+b)x}

J...(*)

Classification:
() Non-dilemma:a >0.b <0, ESS:one

(1) Prisoner’s dilemma : a <0. b >0, ESS :one
(1) Coordination : a>0,b>0, ESS two

1

@IV) Hawk-Dove : a<0,b < 0, ESS one (mixed strategy]
&

2
S1 S 2
S1 a,a 0,0
S2 0,0 b,b

Payoff Matrix /
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REVIEW: Symmetric and Asymmetic Games

® The difference between symmetric and asymmetric

two person game is the payoff matrix .

Type 2 Type 2
S1 |52 S1 | S2
e 1Sl |A®|CB | Type1|S1 |AP |CG
s2 |B,C |D,D S2 |B,F |D,H
Symmetric Two Person Game Asymmetric Two Person Game
Replicator Equation:  one two

Situation: |
. Asymmetric : seller and
Symmetric : buver etc
@ e




e

@

REVIEW: Ising Model, Spin Glass

Ising model ¢ °* °

Spin Glass * °*
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REVIEW: Ising Model, Spin Glass

o Ising model * * * HIE® (BT 3HNE3) 28 TR
ﬁgtf?wo

c ERIAGID OHLEN T, BIEAME (CuricimE) 28X
L, BALTB,

e T Lichsd (REV®D) KREsj ¢ {-1,+1},j=1,... N
o NBEIRBD T+1or-11 IZFTXTHI- 25 rCoopera‘civeJ s
r-1,1J DT 5 I rcompetitivej s

e Hamiltonian (Energy) H — —J Z Si S j
1]

° Spin Glass * °* °

(s Y,




4 N
REVIEW: Ising Model, Spin Glass
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" REVIEW: PERCOLATION

[d-dimensional Percolation]

We examine each edge of Z4, and consider it to be open
with probability p and closed otherwise, independent of all
other edges. The edges of Z9 represent the inner
passageways of the stone, and the parameter p is the
proportion of passages that are broad enough to allow water
to pass along them. Suppose we immerse a large porous
stone in a bucket of water. What is the probabillity that the
center of the stone is wetted ?




" REVIEW: PERCOLATION

[d-dimensional Percolation]

We examine each edge of Z9, and consider it to be open
with probability p and closed otherwise, independent of all
other edges. The edges of Z9 represent the inner
passageways of the stone, and the parameter p is the
proportion of passages that are broad enough to allow water
to pass along them. Suppose we immerse a large porous
stone in a bucket of water. What is the probability that the
center of the stone is wetted ?
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MODEL

e Each site on the lattice is the

address of one player.

® In Sec.2, player i and jplaya
game with nearest neighbor

Interaction.

® In Sec.3, the players are assumed to

e

search at random for trading
opportunities and when they meet

the terms of game are started.

@
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Situation (nearest neighbor interaction)
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EXAMPLE

S1(-1)

S2(+1)

S1(-1)

AA

0,0

S1(1) [S2(2)
s1(1) [AA 0,0
s2(2) (00 |BB

S2(+1)

0,0

B,B

where A,.B >0

Ising Model




PROBABILITY SPACE
® Probability Space (£, E P)

Q={-1,+1}"

L oC exp[j/H (S)]dS cF  (Prop.1)

UlFFN EDOFESRBIET, dSIFQLED—HBHHET
5. MERRAIIZIXAS (XZEE1/2 DBernoulli % &
ERELEDTHS,
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PROP. : Under Assu., we obtain the probability distributions of
actions, {S,},i=1,...,N, and the palyer’s payoff from the outcome is f

0 TPHS ) = Z texp(y )

where {S;} is player i’s action, Y is non-negative constant; for instance,

Y is the optimal choice behavior fis the player’s payoft from the

outcome {S;}, and Z is the normalization parameter.
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ASSUMPTION , PROPOSITON

[ASSU. + All players are “rational”. ]

PROP. : Under Assu., we obtain the probability distributions of
actions, {S,},i=1,...,N, and the palyer’s payoff from the outcome is f

0 TPHS ) =Z exp(y )

where {S;} is player i’s action, Y is non-negative constant; for instance,

Y is the optimal choice behavior fis the player’s payott from the

outcome {S;}, and Z is the normalization parameter.

°/ INTERPRETATION : If payoft fis greater, then the probability of

choosing the action is higher.

*| Distinction : STATICS, Non- Externality




e

Classical EVOLUTIONARY GAME
[ASSH. . All players are “rational”. J




e

Classical EVOLUTIONARY GAME
[ASSH. . All players are “rational”. J

® Under this assumption, we obtain the unique solution:
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Classical EVOLUTIONARY GAME

[ASSU. + All players are “rational”. J

® Under this assumption, we obtain the unique solution:

Selection Dy.—>Replicator Eq.

x =% (f-T)i=L-N.

INTERPRETATION : If the payoff f, is greater then
the expected utility, the player choose the action
with probability 1.

Distinction: DYNAMICS, EXTERNALITY
@




" REVIEW: Replicator Equation
I?EPLICATOR EQ. X=X ((AX)I — X AX), | = 1---.n.

If the player's payoff from the outcome i is greater than the
expected utility x Ax, the probability of the action i is higher than
before. And this equation shows that the probability of the action i
chosen by another players is also higher than before (externality).
Furthermore, the equation is derived uniquely by the monotonic
(that is If one type has increased its share in the population then all
types with higher profit should also have increased their shares).

Two Strategies (o
[x=x(1—x){b—(a+b)x} J---(*) ,
Classification:
() Non-dilemma:a >0.b <0, ESS : one S1 S 2
(I1) Prisoner’s dilemma : a <0. b >0, ESS :one S 1 a 0.0
(1) Coordination : a>0,b>0, ESS two 1 <5 0’0 b’b

av) Hawk-Dove : a<0,b < 0, ESS one (mixed strategy)
\ Payoff Matrix /




" DEFINITION

DEFE. : We define an order parameter, as how often a player

has chosen an action in this game.

(2.2)




" DEFINITION

DEFE.  We define an order parameter, as how often a player

has chosen an action in this game.

 m=3se(s)

where N Is the number of the actions.
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EXAMPLE
® The actions’ index {S,} ={1,2} /,N=2, and the order

parameter for each case is computed as follows.
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EXAMPLE

® The actions’ index {S,} ={1,2} /N=2, and the order

parameter for each case is computed as follows.

(i) If all the players' actions are {Action 1}, then we obtain

m—1.

(ii) If all the players' actions are {Action 2}, then we obtain

m—2.

(iii) If half of all the players’ actions are {Action 1}, then we

obtain m=3/2.

S1(1) [S2(2)
s1(1) [AA 0,0
s2(2) (00 |B,B




EXAMPLE
® The actions’ index {S,} ={1,2} /N=2, and the order
parameter for each case is computed as follows.
(i) If all the players' actions are {Action 1}, then we obtain
m=1.
(ii) If all the players' actions are {Action 2}, then we obtain
m=2.

(iii) If half of all the players’ actions are {Action 1}, then we
obtain m=3/2.

— If the order parameter m
IS near 1, then we know that S1(1) |S2(2)

there are many more players
choosing {Action 1} than S1(1) |AA |00

@ {Action 2}. S2(2) 10,0 B,B
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° Si={-1,1} — m= -1,0(random), 1
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-1 Rational Choice Behavior
Rational Player Random behavior
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SIMULATION

=Strategy 1, BLUE=Strategy 2

ORDERED TYPE 1

m >0

(s1,s1)

NO ORDERED ORDERED TYPE 2
m =0 m" <0
Random (s2,52)
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® If the yfis large, order parameter 1

approaches to 1. v Iarg’e\

0.5 .
i small

— We can find which action is occupied.

0 =

05
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/Relation between order parameter and h
product of profit f and parametery

m

® If the yfis large, order parameter 1

approaches to 1. v Iarg’e\

0.5 .
i small

— We can find which action is occupied.

0 =

e [f the Vf 1S Smau, order parameter 05

approaches to O.
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ORDERED PARAMETER IN REPLICATOR

SYSTEM

REPLICATOR Eqguation (symmetric
two person game, the number of the
strategy Is two.)

X=X(1-x){b—-(a+b)x}
Stationary point (Nash equilibrium)

Xx°=0,10< b <1
a+b
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ORDERED PARAMETER IN REPLICATOR
SYSTEM

m

b

o §

o '®

REPLICATOR Eqguation (symmetric
two person game, the number of the
strategy Is two.)

X=X(1-x){b—-(a+b)x}

Stationary point (Nash equilibrium)

X" =0,1,0< D <1
a+b




ORDERED PARAMETER IN REPLICATOR
SYSTEM

m REPLICATOR Equation (symmetric
two person game, the number of the
+1 ; strategy Is two.)

X=X(1-x){b—(a+Db)x}
@ Stationar Int (Nash eq%ilibrium)

X =0,1,0< <1

@
<

a+b

ORDERED PARAMETER
has three points (corner
point(-1,+1), interior point) In
RE. SYS.

o '®




" EVOLUTIONARY STABLE STRATEGY
(ESS)

DEF. : Weibull(1995): XeEA isan evolutionary
stable strategy (ESS) if for every strategy Y # X there

exists some &, € (0,1) such that the following
inequality holds for all & € (0, 8y)

ufx,ey+@A—e)x]>uly,ey+ (1—¢)x].




EVOLUTIONARY STABLE STRATEGY
(ESS)

DEF. : Weibull(1995): XE€A isan evolutionary
stable strategy (ESS) if for every strategy Y # X there

exists some &, € (0,1) such that the following
inequality holds for all & € (0, 8y)

ufx,ey+@A—e)x]>uly,ey+ (1—¢)x].

INTERPRETATION: : incumbent payoff (fitness) is higher
than that of the post-entry strategy

@

(ESS : (Mthe solution of the Replicator equation + 2
asymptotic stable.)




PROPOSITION

PRO. (Bishop and Cannings (1978)): X € A s evolutionary
stable strategy if and only if it meets these first-order and

second-order best—reply :
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second-order best—reply :
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= u(y,y) <u(x,y),




PROPOSITION

PRO. (Bishop and Cannings (1978)): X &€ A s evolutionary
stable strategy if and only if it meets these first-order and

second-order best—reply :

(24) u(y,)<u(xx), vy, —— Nane

(2.5) u(y, X) =u(x, x) Wy %X,

= u(y,y) <u(x,y),

\\Asymptotic Stable

Conditon




PROPOSITION

PRO.: XE A is an evolutionary stable strategy in an
evolutionary game with statistical mechanics, if there exists

some m such that the inequality (2.6) holds for all m”




PROPOSITION

PRO.: XE A is an evolutionary stable strategy in an
evolutionary game with statistical mechanics, if there exists

some m such that the inequality (2.6) holds for all m”

(2.4) u(y,x)<u(x,x), Wy,
(2.6) |m—m*

<& , |Lyapunov Stable
) Condition

where, m” is the index of the equilibrium action.

N,
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° Si={-1,1} — m= -1,0(random), 1
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ASYMMETRIC TWO PERSON GAME

® Let this model add an order parameter; we can analyze

an asymmetric two—person game in the same way.

o Equilibrium Condition:
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ASYMMETRIC TWO PERSON GAME

® Let this model add an order parameter; we can analyze

an asymmetric two—person game in the same way.

o Equilibrium Condition:

hng—nfl

m',—m

<g <&,




" PERCOLATION

® The fundamental relationship between percolation and

phase transition
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® The fundamental relationship between percolation and

phase transition

THE. (Coniglio, et al.(1976)) In the two-dimensional Ising

model, we obtain
i) If ¥ > 7, ,u;,o({JCJ = oo})> 0, y;’o({JCO“ = oo})> 0.

where 1°,S= {-I-, —} is Gibbs measures.

(ii) if W is external to the set of all Gibbs states G (7/ : h)
(|-l )0




" PERCOLATION

® The fundamental relationship between percolation and

phase transition

THE. (Coniglio, et al.(1976)) In the two-dimensional Ising

model, we obtain
i) If ¥ > 7, ,u;,o({JCJ = oo})> 0, y;’o({JCO“ = oo})> 0.

where 1°,S= {-I-, —} is Gibbs measures.

(ii) if W is external to the set of all Gibbs states G (7/ : h)
(|-l -0

(i) — there exists a.e. an infinite cluster of the corresponding sign and no
infinite clusters of the opposite sign.

@ (i) — there exists an infinite cluster for neither actions,
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° Si={-1,1} — m= -1,0(random), 1
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~ DEFINITION(CONNECTED)

DEF. A subset Ac B? is called connected if and only if for every X, Y e A

, there exists a sequence {bl,b2 b } e A such that
@ Xeb, and Y b,

(b) Forevery, 1<1<n-1
there exists a point X; € /Z 2 such that bi M bi+1 =X -
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DEF. A subset Ac B? is called connected if and only if for every X, Y € A
, there exists a sequence {bl,b2 b } e A such that

@ Xeb, ad Y b,
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(a) C is connected,

(b) Forevery h e A/ C, Cu {b} is not connected.




~ DEFINITION(CONNECTED)

DEF. A subset Ac B? is called connected if and only if for every X, Y € Z
, there exists a sequence {bl,b2 b } e A such that

@ Xeb, ad Y b,

(b) Forevery, 1<1<n-1

there exists a point X; € / 2 such that bi M bi+1 —

DEF.For, AcC B”, C c A is called A's connected component if and only if

(a) C is connected,

(b) Forevery h e A/ C, Cu {b} is not connected.

DEF 2.11 A subset A Z“ is called ( %) connected if and only if for every
X, Y e A\, there exists a sequence of points {Xl, Xoyeooy X, } — A such that

Xo =XX 4 =Y andforevery,lﬁiﬁn-l-l,
=1.

where | X:(xl,xz\,ezz, ||X||=maX{| '

n+1

X, — X

i+1

le}.
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Concentric Circle Pattern and Chess Pattern

e What kind of pattern do the actions’ distribution on the

lattice make ?
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e
Concentric Circle Pattern and Chess Pattern

e What kind of pattern do the actions’ distribution on the

lattice make ?

Concentric Circle Pattern Chess Pattern

— red surrounded by a bigger
blue, which is surrounded by a
biggerred, ....

— red and blue placed alternately

@ coexistence of finite (*) connected coexistence of infinite (*) connected
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Coexistence of infinite (*)-clusters

TH. (Higuchi(1995) ) For every ¥ > 0 is sufficiently small,

theie exji_sts h such that y'h'< —|Ogl De —4y,
vh < > log Pe _ 4y implies the coexistgﬁce of infinite (*)-

clusters with respect to the Gibbs state for K, .
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Coexistence of infinite (*)-clusters

TH. (Higuchi(1995) ) For every ¥ >0 is sufficiently small,

theie exji_sts h such that y'h'<= |Ogl De —4y",
vh < > log Pe -4y implies the coexistgﬁce of infinite (*)-

clusters with respect to the Gibbs state for K, .

OUTLINE OFTHE PROOFE

Step 1. LemmaA.1 — ANMNEAREZERT-DDOE G285

Step 2. + BRI D¥Percolation ¥ B Bﬁ*(pc) & — BEBE ¥ Percolation B
BER(1 )ERDB 1 p<p<pThD, ZN5EFAEICHED
VOFGEROE, FH2D0FH42EHTHILENTES.
(QED)

« ~JER% I SRS —DHRELFE

D-corswmostizs=2mony—v




QIZK/NERZEAND.

cfEFEDXEZ® IzHL T ZD'(X)<77(X) Ligdt
S, m<n &0 LIZTS. ZOKRDMR
Bz LT O F oMK SO RAREMGRD) &
X, o <ndone izl THIC

fl@)<fp)exzresvns.




QIZK/NEREAND.

cfEBDXeZ Izl T a(X)<n(x) LB L
IS, o< LD ZLITTH. ZORDMH
fRicxt LT Q Lo BI%Kk A S RRARIMGRD) &
1, o <nK3oneQ izl THI

f@)<f(n)ersratnd.

DEF. Q L DBERAIF  EvIZH L T, n=veid, £
BEOQLDEREIDHFEMBEAEK ricxf L T

f(@)u(d@) < jﬂ f(@)v(dw)
LILBLEIZED.




/EQA.I. (FKG—Holley Inequalities) Ac/ %ﬁl‘ﬂ%ﬁ & l]\

T, Q, LOrODHERAE vE, EED

0y, 0 cQ LT

A ,U(01 Noy V(o Vv o,) 2 p(o)v(o,)

ziwmlzdE5iE, ( Q LOBEHEL L THu=vTH
3. kEL (01 ~5,)(X) =min{o;(x), 5, (X))},

(o1 v 0,)(X) —max{@(_) 07(_)‘( ¥




/EQA.I. (FKG-Holley Inequalities) AcZZHRESL l]\
T, Q, LDrODHERAE vE, EED

0y, 0 cQ LT

A ,U(01 No,)V(oy Vv 0,) 2 p(o)v(o,)

zimleyaolE, ( Q FOMEREL L THu=»Th
3. kEL (01/\02)(X) min{o,(x),,(X)},

.£G1 VG?X_) — max{q(_) G?(_)‘( 75

RAL A2 7 DEBRBAPEESGLTE. ZOLELUTOD
CEHDBRRILT B,

0 @,neQ K=, 2HkTESE q7 <q]

(i) f,g 2 Pl BRI MBER L T3 LIEB DD € )
extLc |, foda? = | fdq7e| gdqy.

(i) N —

7/h 4|y — 7/|>O &‘bli EEow Q)
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1992)

SPATIAL PRISONER'’S DILEMMA GAME,

X.
Nowak and May(Nature,

E

: E.
Ld ..—.- =k
mponnn . .7 ._...._.|1.._.w. E.
L _.A_._u U n_._T a A S )| R
Ch! N0 rd] . ...u_r____.L

of gbn mds 7 : L
- F f N ottt
Enﬂﬁ mh#un_w THE R
Oy SR S . P
Luboodda ; w...._..._n_-..._.r.-_nrm.“.y_ :
1 ey

ca I T B

Red: D (defect),

Green : C following a D

@

BIue:C(cooeate),

Coexistence of infinite (*)-clusters
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4. Implication : Cont- Bouchaud’s Model
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SK MODEL

¢ Random Matching
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SK MODEL

e Random Matching
0 Payoff Fitness

H({3,})= 23,88,

i# |

where P(J;)= .

\/27Z'JZ

J, : Average , J? : Variance

exp —

(35-30)° |

2J)°




Situation

SIS
QDR QD =
& (2 1" ’
& "l 7Ry =,
) &) & 7Ry G




a9 .
Situation
(random matching : annealed system)

@g@@

@ a9

@
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Situation
(random matching : Quenched System)

At Random




g ANEALED SYSTEM

® Social Welfare Function, 21 Bk o e 1y
F=ylog(Z),  Probability of Matching

(Z)= %jil(i__)[dJijP{Ji}exp(yH (3, h,

_ —__Fitness
J 2
:Zexp Z<7JOSiSj +(7/2) (SiSj)2>
{Si} (1) L

-




s ANEALED SYSTEM

® Social Welfare Function, 21 Bk o e 1y
F=ylog(Z),  Probability of Matching

ZI HdJ P l, fexp(yH {J; ).

; ‘\W Fitness

=) exp Z<yJ S:S, +(7J) (S,S)* ¢

U )

Solved ™
q

F
@

:7[2{”0@%2%w(zsm-yJOstf—éwstfH

[Si]

/




* m=<G5i>,
oF
_:2 ZJ NZm 312 4 3:
P 7 Jd, 2y J°N"m” =0
m=0 or =+ —Jo
_ \ 7J3*N*




—=27*J,N°m+27°J°N*m°’ =0

~J,
_ \ 7J3*N*

AsN —o0o, m=0.

1 . In Ising type, the order parameter is a tanh function; however,

the order parameter is a point, like a replicator system.

2. If there are infinite players on this lattice, then the order

parameter is 0.

@
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QUENCHIED SYSTEM

® Quenched system :
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QUENCHIED SYSTEM

® Quenched system : J;; is chosen randomly, but then is fixed.
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QUENCHIED SYSTEM

® Quenched system : J;; is chosen randomly, but then is fixed.

Social Welfare Function: F = 7/<|0g Z>
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QUENCHIED SYSTEM

® Quenched system : J;; is chosen randomly, but then is fixed.

Social Welfare Function: F = 7/<Iog Z>

Replica Method <Iog Z> = Iim(<Z”>—1)

n—0
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QUENCHIED SYSTEM
® Quenched system : J;; is chosen randomly, but then is fixed.
Social Welfare Function: F = 7/< >
Replica Method <Iog Z> |Im( > 1\
" *g‘z - 2
Hubbard-Stranovich Trans. exp| — | = exp| ax —— |dx
i 2 | a\/27z' v oo 2
+ saddle point method + replica symmetry




g

Replica Method <Iog Z>

1 oo
m=——=| exp
sova = 75 o9

@ — | Like a Ising Type |

Social Welfare Function: F

Hubbard-Stranovich Trans. eXp

QUENCHIED SYSTEM

® Quenched system : J;; is chosen randomly, but then is fixed.

2

a’
2_

or

+ saddle point method + re_plica symmetry

=y(logZ)
im((z")-1
1

® OO

o —C0O

exp

22 jtanh(y3ﬁ+7/3~o”)dz
a = %fiexp[_ Z_zzjta”hz(ﬁﬁwjo”)dz

dx

/




" TAP EQUATION

® Let a model add another parameter h; (an effect of externality).

H({3;})=2.3,8S;+>h;S,

1# 1#




" TAP EQUATION

® Let a model add another parameter h; (an effect of externality).

Annealed System

—>Solved

H({3;})=2.3,8S;+>h;S,

1# 1#

N, =2ym(1-N)(J, +J°m?)
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® Let a model add another parameter h; (an effect of externality).
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Ey 17 |

Annealed System

—>Solved nj — 27/m(1— N)(‘JO -+ .J 2m2)

Quenched System ‘mi :tanh< ( +ZJ,J J]>




" TAP EQUATION

® Let a model add another parameter h; (an effect of externality).

H({321)= X488, + Ths

Ey 17 |

Annealed System

—>Solved nj — 27/m(1— N)(‘JO -+ .J 2m2)

Quenched System ‘mi :tanh< ( +ZJ,J J)>

— 1 . Weiss approximation : < f [S]> ~ f [< >],

2. Taylor expansion :

~—
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" TAP EQUATION

® Let a model add another parameter h; (an effect of externality).

({ }) Z‘]u i J+Zhjsj

i i

Annealed System

—>Solved nj — 27/m(1— N)(‘JO -+ .J 2m2)

Quenched System ‘mi :tanh< ( +ZJ,J Jj>

_ 1 . Weiss approximation : < f [S]> ~ f [< >],
2. Taylor expansion :

- 1 .

—] mi —_ hﬁ ,T - —

T-J, y
@




" TAP EQUATION

® Let a model add another parameter h; (an effect of externality).

H({3;})=2.3,8S;+>h;S,

1# 1#

Annealed System

—>Solved nj — 27/m(1— N)(‘JO -+ .J 2m2)

Quenched System ‘ m. = tanh<7/£hi +Z‘]ijmjj>’

- 1 . Weiss approximation : < f [S]> ~ fj[<S>]1

2. Taylor expansion : —If the maximal
— 1 eigenvalue of J, Is 2J,
> M, = h/1 T== the order parameter is

T — \]/1 discontinuous.

@ —Multiple Equilibria Y
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MULTIPLE EQUIRIBRIA

Externality, Random
Matching, Quenched
System

Rational Player

Random behavior
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* EXAMPLE : Ising model
° Si={-1,1} — m= -1,0(random), 1

m
1

{k

Non-Externality, Nearest
Neighbor Interaction

YC

Rational Choice Behavior

Rational Player

Random behavior




4. IMPLICATION

Cont-Bouchaud’s Model

1. Introduction (Motivation, Purpose)
2. Related Literatures and Preliminaries
3. Our Model
3.1 Nearest neighbor (Ising TYPE)
3-2. Random Matching (SK MODEL)
Annealed System, Quenched System
| 4. Implication : Cont- Bouchaud’s Model |
@ 5. Summary and Future Works W




a I
Cont-Bouchaud ‘s model = § 2 ‘s model.

® This study discusses the simplitied Cont and Bouchaud

model through our models.

IMAGE
KEREIFE

R #F = #1A,B,

{BARESABC




a I
Cont-Bouchaud ‘s model = § 2 ‘s model.

® This study discusses the simplitied Cont and Bouchaud

model through our models.

— We can understand the plaver’s behavior in Cont and
play

Bouchaud model.

POINT! :
IMAGE -
AT Percola_tlon Cluster
< trading groups
chIEFE % & 1A, B,
@ AR ERAB,C
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® A stock market with NAGENTS
o Trading a SIGNLE asset




® A stock market with NAGENTS
o Trading a SIGNLE asset

® The demand for stock of agent i is represented by a
random variable Qi(t)( € {-1,0,1})

®i(t)>0 : BULL , <0 :BEAR, 0:not trade
P(¢ =+1)=P(¢ =-1)=a,P(¢ =0)=1-2a.




® A stock market with NAGENTS
o Trading a SIGNLE asset

® The demand for stock of agent i is represented by a
random variable Qi(t)( € {-1,0,1})

®i(t)>0 : BULL, <0 :BEAR, 0: not trade
P(¢ =+1)=P(¢ =-1)=a,P(¢ =0)=1-2a.

® Between price changes and-excess demand:
X(t) = x(t +1) — x(t) : A- Market Depth

CLUSTER . f
T It measure the sensitivity of price
Iltitglrjsr,n(?:gglci);ons) The size - to fluctuations in excess demand
A of cluster

Aggregate Excess Demand

X(t) = %Zwaqﬁa (t
\ g;!!l a=1




Price Valuation
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" Heavily tails

: ] - D) rer wread pgwig % S~ M e > = e me »
T -

-

!
'

e

k

"

‘ . ‘0 “"
D ol o 8
N >y

E N—alL—a éEmhisnMmisEe) LYERS;
® For decrease in the activity parameter a showing its
similarity with real stock market phenomena: the

heavily tails observed in the distribution of stock

@ market.




Random Matching (Cont-Bouchaud)

* Annealed Sys. (+ externalitiy)
H

® Quenched Sys

—>

® Quenched Sys. + externality
H
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Random Matching (Cont-Bouchaud)

* Annealed Sys. (+ externalitiy)

— One action occupied.
The price is higher or lower than before.

® Quenched Sys

—>

® Quenched Sys. + externality
ﬁ
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Random Matching (Cont-Bouchaud)

* Annealed Sys. (+ externalitiy)

—One action occupied.
The price is higher or lower than before.

® Quenched Sys
—like a Ising type.

® Quenched Sys. + externality
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Random Matching (Cont-Bouchaud)

* Annealed Sys. (+ externalitiy)

—One action occupied.
The price is higher or lower than before.

® Quenched Sys
—like a Ising type.

® Quenched Sys. + externality

—multiple equilibria (The rate of price change is dependent
on the size ot ).

@
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3.1 Nearest neighbor (Ising TYPE)
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~ SUMMARY

‘Add the parameter (optimal choice behavior).




~ SUMMARY

‘Add the parameter (optimal choice behavior).

* Sec. 2: We construct the nearest neighborhood model (Ising

Type)

e Sec. 3: We construct the randomly matched model
(Annealed Sys., Quenched Sys.)

* Sec.4: Quenched System + Externality
— multiple equilibria

® Sec.5: Apply to econo—physics’ model
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~ SUMMARY

‘Add the parameter (optimal choice behavior).

® Sec. 2: We construct the nearest neighborhood model (Ising
Type)

* Sec. 3: We construct the randomly matched model
(Annealed Sys., Quenched Sys.)

* Sec.4: Quenched System + Externality
— multiple equilibria

® Sec.5: Apply to econo—physics’ model

FUTUREWORKS : relation between this model and
DMBG( Dynamic Matching and Bargaining Game),

Simulation (Monte Calro Simulation)

@ Fin
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