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OUR PROBLEM

• Q How does each player choose the action in 
stochastic environment ?
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OUR PROBLEM

• Q How does each player choose the action in 
stochastic environment ?

• A.1：Each player randomly chooses the action. 
(mixed strategy) (Harsanyi , 1973)

• A.2：Each player chooses the better action. 
(pure strategy)  (Selten, 1980)
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MATHEMATICAL BIOLOGY

• Stochastic Environment
• Bet-Hedging Strategy (=Mixed Strategy)

• Fitness Function is
• (i)  Geometric mean
• (ii)  Arithmetic average
Game Theory
• The fitness(utility) function is a von-Neumann-

Morgenstern utility function .
• → No Bet-Hedging Strategy ?
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Harsanyi (1973)
• Harsanyi, J. C. (1973): ”Games with Randomly Distributed Payoffs: 

A New Rationale for Mixed-Strategy Equilibrium Points,” 
International Journal of Game Theory, Vol.2, pp.1-23.

h. Fix a set of I players and strategy spaces Si. For a 
set of payoffs {ui(s)}i∊F,s∊S of Lebesgue measure 1, for 
all independent, twice-differentiable distributions pi
on Θi=[-1,1]#S, any equilibrium of the payoffs ui is 
the limit as ε→0 of a sequence of pure-strategy 
equilibria of the perturbed payoffs        . 

→The probability distributions over strategies 
induced by the pure-strategy equilibria of the 
perturbed game converge to the distribution of the 
equilibrium of the unperturbed game.

16



Harsanyi (1973)
• Harsanyi, J. C. (1973): ”Games with Randomly Distributed Payoffs: 

A New Rationale for Mixed-Strategy Equilibrium Points,” 
International Journal of Game Theory, Vol.2, pp.1-23.

• Th. Fix a set of I players and strategy spaces Si. For 
a set of payoffs {ui(s)}i∊F,s∊S of Lebesgue measure 1, 
for all independent, twice-differentiable 
distributions pi on Θi=[-1,1]#S, any equilibrium of the 
payoffs ui is the limit as ε→0 of a sequence of pure-
strategy equilibria of the perturbed payoffs        . 

→The probability distributions over strategies 
induced by the pure-strategy equilibria of the 
perturbed game converge to the distribution of the 
equilibrium of the unperturbed game.

17

iu~



Harsanyi (1973)
• Harsanyi, J. C. (1973): ”Games with Randomly Distributed Payoffs: 

A New Rationale for Mixed-Strategy Equilibrium Points,” 
International Journal of Game Theory, Vol.2, pp.1-23.

• Th. Fix a set of I players and strategy spaces Si. For 
a set of payoffs {ui(s)}i∊F,s∊S of Lebesgue measure 1, 
for all independent, twice-differentiable 
distributions pi on Θi=[-1,1]#S, any equilibrium of the 
payoffs ui is the limit as ε→0 of a sequence of pure-
strategy equilibria of the perturbed payoffs        . 

→The probability distributions over strategies 
induced by the pure-strategy equilibria of the 
perturbed game converge to the distribution of the 
equilibrium of the unperturbed game.

18

iu~



EX. Battle of Sexes (BoS)
• Consider two-player games in which each player 

i has two pure strategies, ai and bi. Let δi for 
i=1,2 be independent random variables, each 
uniformly distributed on [-1, 1], and let the 
random variables εi(a) for i=1,2 and a∊A have 
the property that ε1(a1,x)-ε1(b1,x)= δ1 for x=a2,b2

and ε2(x,a2)-ε2(x,b2)= δ2 for x=a1,b1.

• All the equilibrium of BoS are approachable 
under  ε.  
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a2 b2

a1 2+γδ1, 1+γδ2 γδ1,0

b1 0, γδ2 1,2



Proof Outline
(1) The pure equilibria are trivially approachable.

(2) We  consider the strictly mixed equilibrium. 

For i = 1, 2 let pi be the probability that player i’s type is one 
for which he chooses ai in some Nash equilibrium of G(γε). 

(i) it is optimal for player 1 to choose a1 if  (2 + γδ1)p2 ≧(1 
− γδ1)(1 − p2).

(ii) -1≦δ1 ≦1

(i) + (ii) :  p1 = 1/2(1 − (1 − 3p2)/γ). 

(3) By a symmetric argument about p2

Solving for p1 and p2 we find that p1 = (2 + γ)/(3 + 2 γ) and p2

= (1 + γ)/(3 + 2 γ) satisfies these conditions. Since (p1, p2) 
→ ( 2/3 , 1/3 ) as  → 0 the mixed strategy equilibrium is 
approachable.
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Selten (1980)

• Selten, R. (1980): ”A Note on Evolutionary Stable 
Strategies in Asymmetric Animal Conflicts,” Journal of 
Theoretical Biology, Vol.84, pp.93-101.

Th. A behavior strategy x* in Γ is evolutionary 
stable if and only if x* is a strict Nash 
equilibrium of G.

→No mixed equilibria are evolutionary stable 
when players can condition their strategies on 
their roles in a game.
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Situation (Role Completed Game)
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Situation (Role Completed Game)
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Situation (Traditional Evolutionary Game Theory)
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Ex. Hawk-Dove Game

• Classical H-D Game : 

• Strategy : {Dove, Hawk} 

• Payoff : V>0, V<C

• Nash Eq. : Pure {(H.D), (H,D)} + Mixed

• ESS : Mixed  (× strict Nash)

• Stability : Limit Cycle,  Structurally Unstable.

• Replicator Eq.

33
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• Role Completed H-D Game

• Pure Strategy : {DD}, {DH}, {HD}, {HH}
• {DH} means play Dove if chosen to be a row player in the surface 

game and Hawk if chosen to be a column player.

• ESS : (DH,DH) , (HD, HD) (○ strict Nash)

37

DD DH HD HH
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V/4-C/2, 
3V/4-C

HD V/4,3V/4 (V-C)/2, 
(V-C)/2

V/2,V/2 V/4-C/2, 
3V/4-C

HH V,0 3V/4-
C,V/4-C/2
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3-1. HARSANYI  TYPE
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Stochastic Environment 

(Harsanyi (1973) +  Dynamics)
• Stochastic Environment = payoff variation

eplicator Eq.

Pro. Let x be a strategy distribution. It satisfies :
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Stochastic Environment 

(Harsanyi (1973) +  Dynamics)
• Stochastic Environment = payoff variation

• Replicator Eq.

• Pro. Let x be a strategy distribution. It satisfies :

→Approachable under variance (ζ2)
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PROOF OUTLINE 

• Teramoto (1997)

(i) transformation

(ii) apply central limit theorem

(iii)  transformation
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• Teramoto (1997)

• (i) transformation
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• (iii)  transformation
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EX-1.

• Coordination Game

• Replicator Eq. :

• Equilibrium : 0, 1, 

• Potential Func. :

• The equilibrium of the mixed strategy is unstable.
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a2 b2
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EX-2.

• Battle of Sexes (BoS)

• Replicator Eq. :

• Equilibrium point : (y*,x*)=(0,0), (1,0), (0,1), (1,1),

• The stability of the Mixed Strategy  is saddle point.
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3-2. SELTEN  TYPE
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Stochastic Environment 

(Selten (1980) +  Dynamics)
• “Role” = “Group”

Situation : see next slide.

Pro. Group size and it’s fitness in a game with 
group structure are as follows  :

Price equation
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Situation (two types players)
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Situation (Evolutionary Game Theory with Group Structure)
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Situation (Role Completed Game)
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Situation (Traditional Evolutionary Game Theory)
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Stochastic Environment 

(Selten (1980) +  Dynamics)
• “Role” = “Group”

sSituation : see next slide.

• Pro. Group size and it’s fitness in a game with 
group structure are as follows  :

Price equation
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PROOF OUTLINE 

1) transformation

where 
2)  

3) Definition

Remark : Price equation is equivalent to Replicator 
equation.

65

i
i

i

ii
i

i

ii

i

ii

i

i xfxfxfxfxx 







 








'''' 

iii xxx  '



PROOF OUTLINE 

1) transformation

where 
2)  

3) Definition

Remark : Price equation is equivalent to Replicator 
equation.

66

i
i

i

ii
i

i

ii

i

ii

i

i xfxfxfxfxx 







 








'''' 

iii xxx  '

 
i

iij

i

ii xfxfx  )( xxx  'where



PROOF OUTLINE 

1) transformation

where 
2)  

3) Definition

Remark : Price equation is equivalent to Replicator 
equation.
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PROOF OUTLINE 

1) transformation

where 
2)  

3) Definition

• Remark : Price equation is equivalent to Replicator 
equation.
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EX.

• Two type agent  : {S,A}

• Random Matching : {SS}, {SA}, {AA}

• Price Eq. = Replicator Eq.

• H-D game (a, b < 0)

• Cov[π,x]=0 ⇔ f=0,1, b/(a+b).
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H D

H a, a 0,0

D 0, 0 b, b

Payoff matrix
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GLOBAL GAME
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4． EXTENSION

１．INTRODUCTION
２．RELATED LITERATURES and 
PRELIMINARIES
３．OUR MODEL

3-1. HARSANYI TYPE
3-2. SELTEN TYPE

４．EXTENSION (Global Game)
６．SUMMARY and FUTURE WORKS



Global Game
(1) Complete information about x

(i) unique Nash eq.  
x<0 :  strategy “D”,  x > a : strategy “C”

(ii) Multiple eq.   x∊[0,a] : strategy “C” and “D”
(2) Incomplete information about x
• Player i observes a private signal s=x+εi.
Pro. (Carlsson and van Damme, 1993)  Let γ∊{α, 

β}. If x lies on a continuous curve C such that C 
⊆Θ, g(C) ⊆Rγ, and g(C)∩ Dγ ≠∅, then γ is 
iteratively dominant at x in Γε if ε is sufficiently 
small.

→ unique equilibrium : x∊[0,a]
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Dynamic Global Game

(1) Observation noise = assortative matching
(0≦r ≦1,  r=0 : random matching )
(2) Group Structure  : {S,A}
(3) Price eq.

Cov[π,x] = 0 ⇔ f=0, 1 ,

r→1 :  x>a/2 , Cov[π,x]>0,   x<a/2 , Cov[π,x]<0
→ ESS Unique.
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Global Game
(1) Complete information about x

(i) unique Nash eq.  
x<0 :  strategy “D”,  x > a : strategy “C”

(ii) Multiple eq.   x∊[0,a] : strategy “C” and “D”
(2) Incomplete information about x
• Player i observes a private signal s=x+εi.
Pro. (Carlsson and van Damme, 1993)  Let γ∊{α, 

β}. If x lies on a continuous curve C such that C 
⊆Θ, g(C) ⊆Rγ, and g(C)∩ Dγ ≠∅, then γ is 
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→ unique equilibrium : x∊[0,a]
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5． SUMMARY and FUTURE 

WORKS

１．INTRODUCTION
２．RELATED LITERATURES and 
PRELIMINARIES
３．OUR MODEL

3-1. HARSANYI TYPE
3-2. SELTEN TYPE

４．EXTENSION (Global Game)
５．SUMMARY and FUTURE WORKS



OUR PROBLEM

• Q How does each player choose the action in 
stochastic environment ?

• A.1：Each player randomly chooses the action. 
(mixed strategy) (Harsanyi , 1973)

• A.2：Each player chooses the better action. 
(pure strategy)  (Selten, 1980)
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OUR ANSWER

• Q How does each player choose the action in 
stochastic environment ?

• A.1：Each player randomly chooses the action. 
(mixed strategy) (Harsanyi , 1973)

→ uncertainty of the payoff

• A.2：Each player chooses the better action. 
(pure strategy)  (Selten, 1980)

→ incomplete information
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• Q How does each player choose the action in 
stochastic environment ?

• A.1：Each player randomly chooses the action. 
(mixed strategy) (Harsanyi , 1973)

→ uncertainty of the payoff

• A.2：Each player chooses the better action. 
(pure strategy)  (Selten, 1980)

→ incomplete information

83



Summary

1. Harsanyi(1973)+ Dynamics : 

→ log-normal distribution (central limit theorem)

2. Selten (1980)+ Dynamics :

→ Bayesian Game = Game with Group Structure

→ Price eq. = Replicator eq.

3. Global Game + Dynamics :
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Stochastic Environment 

(Harsanyi (1973) +  Dynamics)
• Stochastic Environment = payoff variation

• Replicator Eq.

• Pro. Let x be a strategy distribution. It satisfies :
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PRELIMINARIES (EVOLUTIONARY GAME THEORY)



Situation (Traditional Evolutionary Game Theory)
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Situation (Traditional Evolutionary Game Theory)
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Situation (Traditional Evolutionary Game Theory)
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Play a 
game  

Another players look at the game.

Replicator Equation

At  Random (infinitely)



REVIEW: Replicator Equation
100

REPLICATOR EQ.

If the player's payoff from the outcome i is greater than the 
expected utility x Ax, the probability of the action i is higher than 
before. 
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before. And this equation shows that the probability of the action i
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REVIEW: Replicator Equation
103

S  1 S  2

S 1 a,a 0,0

S 2 0,0 b,b

(1 ){ ( ) }x x x b a b x


   

Payoff Matrix

1

2

(I) Non-dilemma: a  > 0. b < 0, ESS : one

(II) Prisoner’s dilemma : a  < 0. b > 0, ESS :one
（III)  Coordination : a>0,b>0, ESS two

（IV) Hawk-Dove : a<0,b < 0, ESS one (mixed 

strategy)

Classification

：

REPLICATOR EQ.

If the player's payoff from the outcome i is greater than the 
expected utility x Ax, the probability of the action i is higher than 
before. And this equation shows that the probability of the action i
chosen by another players is also higher than before (externality). 
Furthermore, the equation is derived uniquely by the monotonic
(that is if one type has increased its share in the population then all 
types with higher profit should also have increased their shares).

Two 
Strategies

・・・
(＊)

   .,,1, niAxxAxxx iii 




EVOLUTIONARY STABLE STRATEGY （ESS)

DEF.： Weibull(1995):   is an 
evolutionary stable strategy (ESS) if for 
every strategy                there exists some                       
such that the following inequality holds for 
all .

x y x

10
4

(0,1)y  (0, )y 

[ , (1 ) ] [ , (1 ) ].u x y x u y y x       
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DEF.： Weibull(1995):   is an 
evolutionary stable strategy (ESS) if for 
every strategy                there exists some                       
such that the following inequality holds for 
all .

x y x

(0,1)y  (0, )y 

[ , (1 ) ] [ , (1 ) ].u x y x u y y x       

INTERPRETATION：incumbent payoff (fitness) is higher

than that of the post-entry strategy 

（ESS : ①the solution of the Replicator equation + ②
asymptotic stable.） 105
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PROPOSITION

PRO.(Bishop and Cannings (1978)):                is 
evolutionary stable strategy if and only if it 
meets these first-order and second-order best-
reply :

10
6

x
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(2.4) ( , ) ( , ), ,

( , ) ( , )
(2.5) ,

( , ) ( , ),

u y x u x x y

u y x u x x
y x

u y y u x y
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Nash Eq.

Asymptotic Stable 

Conditon

x
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