"Theory of Biomathematics and Its Applications V" in RIMS, Kyoto Univ. (420: 2009/01/16 10:20-)

Coevolution and Diversity in Evolutionary Game Theory : Random Environment

Mitsuru KIKKAWA (吉川満)

Graduate School of Ecnomics, Kwansei Gakuin Unv.

mitsurukikkawa@hotmail.co.jp This File is available at

http://kikkawa.cyber-ninja.jp/index.htm

OUTLINE

- 1. INTRODUCTION (Motivation, Purpose)
- 2. RELATED LITERATURES and PRELIMINARIES
- 3. OUR MODEL
 - 3-1. HARSANYI TYPE
 - 3-2. SELTEN TYPE
- 4 . EXTENSION (Global Game)
- 5. SUMMARY and FUTURE WORKS

1. INTRODUCTION

- 1. INTRODUCTION
- 2. RELATED LITERATURES and PRELIMINARIES
- 3. OUR MODEL
 - 3-1. HARSANYI TYPE
 - 3-2. SELTEN TYPE
- 4. EXTENSION (Global Game)
- 5. SUMMARY and FUTURE WORKS

OUR PROBLEM

• Q How does each player choose the action in stochastic environment ?

OUR PROBLEM

- Q How does each player choose the action in stochastic environment ?
- A.1 : Each player randomly chooses the action. (mixed strategy) (Harsanyi , 1973)

OUR PROBLEM

- Q How does each player choose the action in stochastic environment ?
- A.1: Each player randomly chooses the action. (mixed strategy) (Harsanyi , 1973)
- A.2 : Each player chooses the better action. (pure strategy) (Selten, 1980)

Research Fields (this study) Selten Harsany (1980) i(1973)

Evoluti onary Game Thoery

2. RELATED LITERATURES and PRELIMINARIES

- 1. INTRODUCTION
- 2. RELATED LITERATURES and
- PRELIMINARIES
- 3. OUR MODEL
 - 3-1. HARSANYI TYPE
 - 3-2. SELTEN TYPE
- 4 . EXTENSION (Global Game)
- 5. SUMMARY and FUTURE WORKS

- Stochastic Environment
- Bet-Hedging Strategy (=Mixed Strategy)

IWASA, Y. (1998)

わか用のゲーム理論研究の推進に大きな役割を果 たしている研究者に云。転音学、転音学、転音学、 社会心理学の分野における記伝記の研究成果。 転音学とゲーム理論の今後の相互関係の方向性を 探り、ゲーム理論ならには統計学に対する新たな展 間の可能性について教えてくれる。

- Stochastic Environment
- Bet-Hedging Strategy (=Mixed Strategy)
- Fitness Function is
- (i) Geometric mean
- (ii) Arithmetic average

13

IWASA, Y. (1998)

わか用のゲーム理論環究の推進したさな資源を果 たしている研究者による。統治学、統督学、生物学、 たな人理学の分野によける最先温の研究成果。 統治学とゲーム理論なら後の相互関係の方面者を 握り、ゲーム理論ならには統治学に対する病在な展 間の価値性について教えてくれる。

- Stochastic Environment
- Bet-Hedging Strategy (=Mixed Strategy)
- Fitness Function is
- 📃 Geometric mean
 - Arithmetic average

14

IWASA, Y. (1998)

わが44のゲーム理論研究の推進に大きな役割を果 たしている研究者による、統治学、統習学、工物学、 社会心理学の分野における最充満の研究処果。 統治学とゲーム理論の今後の相互関係の方向性を 探り、ゲーム理論さらには統治学に対する新たな展 間の可能性について教えてくれる。

- Stochastic Environment
- Bet-Hedging Strategy (=Mixed Strategy)
- Fitness Function is
- (i) Geometric mean
- (ii) Arithmetic average
- **Game Theory**
- The fitness(utility) function is a von-Neumann-Morgenstern utility function .
- \rightarrow No Bet-Hedging Strategy ?

わか4両のゲーム理論研究の推進にたきな役割を果 たしている研究者による、転待学、統督学、生物学、 社会な理学の分野における損先温の研究成果。 転待学とゲーム理論の今後の相互関係の方向性を 思り、ゲーム理論さらには経済学に対する新たな展 副の価値性について教えてくれる。

Harsanyi (1973)

• Harsanyi, J. C. (1973): "Games with Randomly Distributed Payoffs: A New Rationale for Mixed-Strategy Equilibrium Points," *International Journal of Game Theory*, Vol.**2**, pp.1-23.

Harsanyi (1973)

- Harsanyi, J. C. (1973): "Games with Randomly Distributed Payoffs: A New Rationale for Mixed-Strategy Equilibrium Points," *International Journal of Game Theory*, Vol.**2**, pp.1-23.
- **Th.** Fix a set of *I* players and strategy spaces S_i . For a set of payoffs $\{u_i(s)\}_{i \in F, s \in S}$ of Lebesgue measure 1, for all independent, twice-differentiable distributions p_i on $\Theta_i = [-1, 1]^{\#S}$, any equilibrium of the payoffs u_i is the limit as $\varepsilon \to 0$ of a sequence of purestrategy equilibria of the perturbed payoffs \tilde{u}_i .

Harsanyi (1973)

- Harsanyi, J. C. (1973): "Games with Randomly Distributed Payoffs: A New Rationale for Mixed-Strategy Equilibrium Points," *International Journal of Game Theory*, Vol.**2**, pp.1-23.
- **Th.** Fix a set of *I* players and strategy spaces S_i . For a set of payoffs $\{u_i(s)\}_{i \in F, s \in S}$ of Lebesgue measure 1, for all independent, twice-differentiable distributions p_i on $\Theta_i = [-1, 1]^{\#S}$, any equilibrium of the payoffs u_i is the limit as $\varepsilon \to 0$ of a sequence of purestrategy equilibria of the perturbed payoffs \tilde{u}_i .
- →The probability distributions over strategies induced by the pure-strategy equilibria of the perturbed game converge to the distribution of the equilibrium of the unperturbed game.

EX. Battle of Sexes (BoS)

- Consider two-player games in which each player *i* has two pure strategies, a_i and b_i . Let δ_i for *i*=1,2 be independent random variables, each uniformly distributed on [-1, 1], and let the random variables $\varepsilon_i(a)$ for *i*=1,2 and $a \in A$ have the property that $\varepsilon_1(a_1,x)-\varepsilon_1(b_1,x)=\delta_1$ for $x=a_2,b_2$ and $\varepsilon_2(x,a_2)-\varepsilon_2(x,b_2)=\delta_2$ for $x=a_1,b_1$.
- All the equilibrium of BoS are approachable under ε .

	a2	b2
a1	$2+\gamma\delta_1, 1+\gamma\delta_2$	γδ ₁ ,0
b1	0, γδ ₂	1,2

(1) The pure equilibria are trivially approachable.

- (1) The pure equilibria are trivially approachable.
- (2) We consider the strictly mixed equilibrium.
- For *i* = 1, 2 let pi be the probability that player i's type is one for which he chooses a_i in some Nash equilibrium of G(γε).
 (i) it is optimal for player 1 to choose a₁ if (2 + γδ₁)p₂ ≥(1 γδ₁)(1 p₂).
 (ii) -1≤δ₁≤1
 (i) + (ii) : p₁ = 1/2(1 (1 3p₂)/γ).

- (1) The pure equilibria are trivially approachable.
- (2) We consider the strictly mixed equilibrium.
- For *i* = 1, 2 let pi be the probability that player i's type is one for which he chooses *a_i* in some Nash equilibrium of *G*(γε).
 (i) it is optimal for player 1 to choose *a₁* if (2 + γδ₁)*p₂* ≥(1 γδ₁)(1 *p₂*).
 - (ii) $-1 \leq \delta_1 \leq 1$
 - (i) + (ii) : $p_1 = 1/2(1 (1 3p_2)/\gamma)$.

(3) By a symmetric argument about p_{2} .

- (1) The pure equilibria are trivially approachable.
- (2) We consider the strictly mixed equilibrium.
- For *i* = 1, 2 let pi be the probability that player i's type is one for which he chooses *a_i* in some Nash equilibrium of *G*(γε).
 (i) it is optimal for player 1 to choose *a₁* if (2 + γδ₁)*p₂* ≥(1 γδ₁)(1 *p₂*).
 (ii) -1≤δ₁≤1
 - (i) + (ii) : $p_1 = 1/2(1 (1 3p_2)/\gamma)$.

(3) By a symmetric argument about p_{2} .

Solving for p_1 and p_2 we find that $p_1 = (2 + \gamma)/(3 + 2\gamma)$ and $p_2 = (1 + \gamma)/(3 + 2\gamma)$ satisfies these conditions. Since $(p_1, p_2) \rightarrow (2/3, 1/3)$ as $\gamma \rightarrow o$ the mixed strategy equilibrium is approachable.

Selten (1980)

 Selten, R. (1980): "A Note on Evolutionary Stable Strategies in Asymmetric Animal Conflicts," *Journal of Theoretical Biology*, Vol.84, pp.93-101.

Selten (1980)

 Selten, R. (1980): "A Note on Evolutionary Stable Strategies in Asymmetric Animal Conflicts," *Journal of Theoretical Biology*, Vol.84, pp.93-101.

Th. A behavior strategy x^* in Γ is evolutionary stable if and only if x^* is a strict Nash equilibrium of G.

Selten (1980)

 Selten, R. (1980): "A Note on Evolutionary Stable Strategies in Asymmetric Animal Conflicts," *Journal of Theoretical Biology*, Vol.84, pp.93-101.

• **Th.** A behavior strategy x^* in Γ is evolutionary stable if and only if x^* is a strict Nash equilibrium of G.

→No mixed equilibria are evolutionary stable when players can condition their strategies on their roles in a game.

Situation (Role Completed Game)

Situation (Role Completed Game) At Random

Situation (Traditional Evolutionary Game Theory) At Random (infinitely)

- Classical H-D Game :
- **Strategy** : {Dove, Hawk}
- **Payoff** : *V*>*0*, *V*<*C*

• Nash Eq. : Pure {(H.D), (H,D)} + Mixed

- Classical H-D Game :
- **Strategy** : {Dove, Hawk}
- **Payoff** : *V*>*O*, *V*<*C*
- Nash Eq. : Pure {(H.D), (H,D)} + Mixed
- **ESS** : Mixed

 D
 H

 D
 V/2, V/2
 0,V

 H
 V, 0
 V/2-C,V/2-C

- Classical H-D Game :
- **Strategy** : {Dove, Hawk}
- **Payoff** : *V*>*O*, *V*<*C*

- Nash Eq. : Pure {(H.D), (H,D)} + Mixed
- **ESS** : Mixed (× strict Nash)

- Classical H-D Game :
- **Strategy** : {Dove, Hawk}
- **Payoff** : *V*>*O*, *V*<*C*
- Nash Eq. : Pure {(H.D), (H,D)} + Mixed
- **ESS** : Mixed (× strict Nash)
- **Stability** : Limit Cycle, Structurally Unstable.
- **Replicator Eq.**

$$x = x(1-x)\{V/2 - C + Cx\}$$

- Role Completed H-D Game
- Pure Strategy : {DD}, {DH}, {HD}, {HH}
- {DH} means play Dove if chosen to be a row player in the surface game and Hawk if chosen to be a column player.

	DD	DH	HD	HH
DD	V/2,V/2	V/4,3V/4	3V/4,V/4	o,V
DH	3V/4,V/4	V/2,V/2	(V-C)/2, (V-C)/2	V/4-C/2, 3V/4-C
HD	V/4,3V/4	(V-C)/2, (V-C)/2	V/2,V/2	V/4-C/2, 3V/4-C
HH	V,0	3V/4- C,V/4-C/2	3V/4- C,V/4-C/2	V/2- C,V/2-C

Role Completed H-D Game

- Role Completed H-D Game
- Pure Strategy : {DD}, {DH}, {HD}, {HH}
- {DH} means play Dove if chosen to be a row player in the surface game and Hawk if chosen to be a column player.
- **ESS** : (DH,DH), (HD, HD)

	DD	DH	HD	HH
DD	V/2,V/2	V/4,3V/4	3V/4,V/4	o,V
DH	3V/4,V/4	V/2,V/2	(V-C)/2, (V-C)/2	V/4-C/2, 3V/4-C
HD	V/4,3V/4	(V-C)/2, (V-C)/2	V/2,V/2	V/4-C/2, 3V/4-C
HH	V,0	3V/4- C,V/4-C/2	3V/4- C,V/4-C/2	V/2- C,V/2-C

Role Completed H-D Game

- Role Completed H-D Game
- Pure Strategy : {DD}, {DH}, {HD}, {HH}
- {DH} means play Dove if chosen to be a row player in the surface game and Hawk if chosen to be a column player.
- **ESS** : (DH,DH), (HD, HD) (O strict Nash)

	DD	DH	HD	HH
DD	V/2,V/2	V/4,3V/4	3V/4,V/4	o,V
DH	3V/4,V/4	V/2,V/2	(V-C)/2, (V-C)/2	V/4-C/2, 3V/4-C
HD	V/4,3V/4	(V-C)/2, (V-C)/2	V/2,V/2	V/4-C/2, 3V/4-C
HH	V,0	3V/4- C,V/4-C/2	3V/4- C,V/4-C/2	V/2- C,V/2-C

Role Completed H-D Game

3. OUR MODEL

3-1. HARSANYI TYPE

- 1. INTRODUCTION
- 2. RELATED LITERATURES and PRELIMINARIES
- 2 OUD MODEL
- 3. OUR MODEL
- 3-1. HARSANYI TYPE
- 3-2. SELTEN TYPE
- 4 . EXTENSION (Global Game)
- 5. SUMMARY and FUTURE WORKS

Stochastic Environment (Harsanyi (1973) + Dynamics)

• Stochastic Environment = payoff variation

Stochastic Environment (Harsanyi (1973) + Dynamics)

- Stochastic Environment = payoff variation
- Replicator Eq.

$$x_i(t) = x_i(t) \{ g_i(t) - g(t) \}, g_i(t) = g_i + \zeta(t)$$

Stochastic Environment (Harsanyi (1973) + Dynamics)

- Stochastic Environment = payoff variation
- Replicator Eq.

$$x_i(t) = x_i(t) \{ g_i(t) - g(t) \}, g_i(t) = g_i + \zeta(t)$$

• **Pro.** Let *x* be a strategy distribution. It satisfies :

$$P(x,t)dx = (2\pi\sigma^{2}t)^{-1/2} \exp\left[-\frac{(\log x - \log x^{*}(t))^{2}}{2\sigma^{2}t}\right] \frac{dx}{x}.$$

Stochastic Environment (Harsanyi (1973) + Dynamics) • Stochastic Environment = payoff variation

• Replicator Eq.

•
$$x_i(t) = x_i(t) \{ g_i(t) - g(t) \}, g_i(t) = g_i + \zeta(t)$$

• **Pro.** Let *x* be a strategy distribution. It satisfies :

$$P(x,t)dx = (2\pi\sigma^{2}t)^{-1/2} \exp\left[-\frac{(\log x - \log x^{*}(t))^{2}}{2\sigma^{2}t}\right] \frac{dx}{x}.$$

 \rightarrow Approachable under variance (σ^2)

• Teramoto (1997)

Teramoto(1997)

- Teramoto (1997)
- (i) transformation

$$x_{i}(t) = x_{i}(t) \{g_{i}(t) - g(t)\}, g_{i}(t) = g_{i} + \zeta(t) \}$$
$$\log \frac{x_{i}(t)}{x(0)} - g_{i}t + \int_{0}^{t} g(t)dt = \sum_{k=1}^{n} \xi_{k}$$

Teramoto(1997)

- Teramoto (1997)
- (i) transformation

$$x_{i}(t) = x_{i}(t) \{g_{i}(t) - g(t)\}, g_{i}(t) = g_{i} + \zeta(t) \}$$
$$\log \frac{x_{i}(t)}{x(0)} - g_{i}t + \int_{0}^{t} g(t)dt = \sum_{k=1}^{n} \xi_{k}$$

• (ii) apply central limit theorem

47

Teramoto(1997)

- Teramoto (1997)
- (i) transformation

$$x_{i}(t) = x_{i}(t) \{g_{i}(t) - g(t)\}, g_{i}(t) = g_{i} + \zeta(t) \}$$

$$\log \frac{x_{i}(t)}{x(0)} - g_{i}t + \int_{0}^{t} g(t)dt = \sum_{k=1}^{n} \xi_{k}$$

- (ii) apply central limit theorem
- (iii) transformation

Teramoto(1997)

数理生態学

言・重定南奈子・中島久男

寺本 英蕾

	a ₂	b ₂
a ₁	$2+\gamma\delta_1, 2+\gamma\delta_1$	$\gamma\delta_1,0$
b ₁	$0, \gamma \delta_1$	1, 1

EX-1.

- Coordination Game
- Replicator Eq. : $x = x(1-x)\{3x-1+\gamma\delta_1\}$
- Equilibrium : 0, 1, $1 \gamma \delta_1$
- **Potential Func. :** $V(x) = \frac{3}{4}x^4 - \frac{4 - \gamma \delta_1}{3}x^3 + \frac{1 - \gamma \delta_1}{2}x^2 + C$

V(x)

1

• The equilibrium of the mixed strategy is **unstable**.

	a ₂	b ₂
a ₁	$2+\gamma\delta_1, 1+\gamma\delta_1$	γδ ₁ ,0
b ₁	0, γδ ₂	1, 2

EX-2.

- Battle of Sexes (BoS)
- Replicator Eq. :
- $x = x(1-x)\{2-\gamma\delta_2 3y\}, \quad y = y(1-y)\{2+\gamma\delta_1 3x\}$
- Equilibrium point : $(y^*, x^*) = (0, 0), (1, 0), (0, 1), (1, 1), \left(\frac{2 \gamma \delta_2}{3}, \frac{2 + \gamma \delta_1}{3}\right)$
 - The stability of the Mixed Strategy is saddle point.

3. OUR MODEL

3-2. SELTEN TYPE

- 1. INTRODUCTION
- 2. RELATED LITERATURES and PRELIMINARIES
- 3. OUR MODEL
 - 3-1. HARSANYI TYPE

3-2. SELTEN TYPE

- 4. EXAMPLE (two strategies)
- 5. EXTENSION (Global Game)
- 6. SUMMARY and FUTURE WORKS

Stochastic Environment (Selten (1980) + Dynamics)

• "Role" = "Group"

Stochastic Environment (Selten (1980) + Dynamics)

• "Role" = "Group"

• **Situation** : see next slide.

Situation (Evolutionary Game Theory with Group Structure) At Random

Situation (Traditional Evolutionary Game Theory) At Random (infinitely)

63

Play a game Another players look at the game. **Replicator Equation**

Stochastic Environment (Selten (1980) + Dynamics)

• "Role" = "Group"

Pro. Group size and it's fitness in a game with group structure are as follows : Price equation $\dot{E}(p) = Cov(f, p) + E(p)$.

1) transformation

$$x'-x = \sum_{i} f'_{i} \cdot x'_{i} - \sum_{i} f_{i} \cdot x_{i} = \dots = \sum_{i} f'_{i} \left(\frac{\pi_{i}}{\pi}\right) x_{i} - \sum_{i} f_{i} \frac{\pi_{i}}{\pi} \Delta x_{i}$$

where $\Delta x_{i} = x'_{i} - x_{i}$

Remark : Price equation is equivalent to Replicator equation.

	Η	D
Η	a, a	0,0
D	0, 0	b, b

EX.

Payoff matrix

- Two type agent : {S,A}
- Random Matching : {SS}, {SA}, {AA}

$$Cov[\pi, x] = \sum_{i \in \{AA, AS, SS\}} f_i(\pi_i - \pi)(x_i - \pi) = f(1 - f)\{f(a + b) - b\}.$$

- Price Eq. = Replicator Eq.
- H-D game (*a*, *b* < *o*)
- $Cov[\pi,x]=o \Leftrightarrow f=0,1, b/(a+b).$

4. EXTENSION

GLOBAL GAME

- 1. INTRODUCTION
- 2. RELATED LITERATURES and PRELIMINARIES
- 3. OUR MODEL
 - 3-1. HARSANYI TYPE
- 3-2. SELTEN TYPE
- 4 . EXTENSION (Global Game)
- 6 . SUMMARY and FUTURE WORKS

Global GameCD(1) Complete information about xDCx, xx, 0(i) unique Nash eq.a > 0x < 0: strategy "D", x > a: strategy "C"a > 0(ii) Multiple eq. $x \in [0, a]$: strategy "C" and "D"

Global Game

(1) Complete information about *x*(i) unique Nash eq.

	С	D
C	X, X	x,0
D	0, x	a, a

a>0

x < o: strategy "D", x > a: strategy "C"

(ii) Multiple eq. *x∈[0,a]* : strategy "C" and "D"
(2) Incomplete information about *x*

• Player *i* observes a private signal $s=x+\varepsilon_i$.

Pro. (Carlsson and van Damme, 1993) Let $\gamma \in \{\alpha, \beta\}$. If *x* lies on a continuous curve *C* such that *C* $\subseteq \Theta$, $g(C) \subseteq R^{\gamma}$, and $g(C) \cap D^{\gamma} \neq \emptyset$, then γ is iteratively dominant at *x* in Γ^{ε} if ε is sufficiently small.
Global Game

(1) Complete information about *x*(i) unique Nash eq.

	С	D
C	X, X	x,0
D	0, x	a, a

a > 0

x < o: strategy "D", x > a: strategy "C"

(ii) Multiple eq. *x∈[0,a]* : strategy "C" and "D"
(2) Incomplete information about *x*

• Player *i* observes a private signal $s=x+\varepsilon_i$.

Pro. (Carlsson and van Damme, 1993) Let $\gamma \in \{\alpha, \beta\}$. If *x* lies on a continuous curve *C* such that *C* $\subseteq \Theta$, $g(C) \subseteq R^{\gamma}$, and $g(C) \cap D^{\gamma} \neq \emptyset$, then γ is iteratively dominant at *x* in Γ^{ε} if ε is sufficiently small.

 \rightarrow unique equilibrium : $x \in [0,a]$

C D C x, x x,0 D 0, x a, a

Dynamic Global Game

a>0

(1) Observation noise = assortative matching $(o \leq r \leq 1, r=o: random matching)$

C D C x, x x,0 D 0, x a, a

Dynamic Global Game

a>0

(1) Observation noise = assortative matching ($o \leq r \leq 1$, r=o: random matching) (2) Group Structure : {S,A}

C D C x, x x,0 D 0, x a, a

Dynamic Global Game

a>0

(1) Observation noise = assortative matching
 (0≤r≤1, r=0: random matching)
 (2) Group Structure : {S,A}
 (3) Price eq.

$$Cov[\pi, x] = f(1-f)\left\{af - (a-x) + r(x-af)\right\}$$
$$Cov[\pi, x] = o \Leftrightarrow f=0, 1, \frac{a\left\{f(r-1)+1\right\}}{1+r}.$$

C D C x, x x,0 D 0, x a, a

Dynamic Global Game

a>0

(1) Observation noise = assortative matching
 (0≤r≤1, r=0: random matching)
 (2) Group Structure : {S,A}
 (3) Price eq.

$$Cov[\pi, x] = f(1 - f) \{ af - (a - x) + r(x - af) \}$$
$$Cov[\pi, x] = o \Leftrightarrow f = 0, 1, \frac{a \{ f(r-1) + 1 \}}{1 + r}.$$

 $r \rightarrow 1$: x > a/2, $Cov[\pi, x] > 0$, x < a/2, $Cov[\pi, x] < 0$ \rightarrow ESS Unique.

Global Game

(1) Complete information about *x*(i) unique Nash eq.

	С	D
C	X, X	x,0
D	0, x	a, a

a>0

x < o: strategy "D", x > a: strategy "C"

(ii) Multiple eq. *x∈[0,a]* : strategy "C" and "D"
(2) Incomplete information about *x*

• Player *i* observes a private signal $s=x+\varepsilon_i$.

Pro. (Carlsson and van Damme, 1993) Let $\gamma \in \{\alpha, \beta\}$. If *x* lies on a continuous curve *C* such that *C* $\subseteq \Theta$, $g(C) \subseteq R^{\gamma}$, and $g(C) \cap D^{\gamma} \neq \emptyset$, then γ is iteratively dominant at *x* in Γ^{ε} if ε is sufficiently small.

 \rightarrow unique equilibrium : $x \in [0,a]$

5. SUMMARY and FUTURE WORKS

- 1. INTRODUCTION
- 2. RELATED LITERATURES and PRELIMINARIES
- 3. OUR MODEL
 - 3-1. HARSANYI TYPE
- 3-2. SELTEN TYPE
- 4 . EXTENSION (Global Game)
- **5**. SUMMARY and FUTURE WORKS

OUR PROBLEM

- Q How does each player choose the action in stochastic environment ?
- A.1: Each player randomly chooses the action. (mixed strategy) (Harsanyi , 1973)
- A.2 : Each player chooses the better action. (pure strategy) (Selten, 1980)

OUR ANSWER

- Q How does each player choose the action in stochastic environment ?
- A.1: Each player randomly chooses the action. (mixed strategy) (Harsanyi , 1973)
- A.2 : Each player chooses the better action. (pure strategy) (Selten, 1980)

OUR ANSWER

- Q How does each player choose the action in stochastic environment ?
- A.1 : Each player randomly chooses the action. (mixed strategy) (Harsanyi , 1973)
- \rightarrow uncertainty of the payoff
- A.2 : Each player chooses the better action. (pure strategy) (Selten, 1980)

OUR ANSWER

• Q How does each player choose the action in stochastic environment ?

83

- A.1 : Each player randomly chooses the action. (mixed strategy) (Harsanyi , 1973)
- \rightarrow uncertainty of the payoff
- A.2 : Each player chooses the better action. (pure strategy) (Selten, 1980)
- \rightarrow incomplete information

1. Harsanyi(1973)+ Dynamics :

84

2. Selten (1980) + Dynamics :

1. Harsanyi(1973)+ Dynamics : \rightarrow log-normal distribution (central limit theorem)

85

2. Selten (1980) + Dynamics :

- **1.** Harsanyi(1973)+ Dynamics :
- \rightarrow log-normal distribution (central limit theorem)
- \rightarrow Approachable under variance (σ^2)
- **2.** Selten (1980) + Dynamics :

- **1.** Harsanyi(1973)+ Dynamics :
- \rightarrow log-normal distribution (central limit theorem)
- \rightarrow Approachable under variance (σ^2)
- **2.** Selten (1980) + Dynamics :
- → Bayesian Game = Game with Group Structure

- **1.** Harsanyi(1973)+ Dynamics :
- \rightarrow log-normal distribution (central limit theorem)
- \rightarrow Approachable under variance (σ^2)
- **2.** Selten (1980) + Dynamics :
- → Bayesian Game = Game with Group Structure
- \rightarrow Price eq. = Replicator eq.
- **3.** Global Game + Dynamics :

- **1.** Harsanyi(1973)+ Dynamics :
- \rightarrow log-normal distribution (central limit theorem)

80

- \rightarrow Approachable under variance (σ^2)
- **2.** Selten (1980) + Dynamics :
- → Bayesian Game = Game with Group Structure
- \rightarrow Price eq. = Replicator eq.
- **3.** Global Game + Dynamics :

Stochastic Environment (Harsanyi (1973) + Ornamics)

- Stochastic Environment = payoff variation
- Replicator Eq.

$$x_i(t) = x_i(t) \{ g_i(t) - g(t) \}, g_i(t) = g_i + \zeta(t) \}$$

• **Pro.** Let *x* be a trategy distribution. It satisfies :

$$(x,t)dx = (2\pi\sigma^2 t)^{-1/2} \exp\left[-\frac{\left(\log x - \log x^*(t)\right)^2}{2\sigma^2 t}\right] \frac{dx}{x}$$

Stochastic Environment (Harsanyi (1973) + Dynamics)

- Stochastic Environment = payoff variation
- Replicator Eq.

$$x_i(t) = x_i(t) \{ g_i(t) - g(t) \}, g_i(t) = g_i + \zeta(t)$$

• **Pro.** Let *x* be a strategy distribution. It satisfies :

$$P(x,t)dx = (2\pi\sigma^{2}t)^{-1/2} \exp\left[-\frac{(\log x - \log x^{*}(t))^{2}}{2\sigma^{2}t}\right] \frac{dx}{x}.$$

Thank you for your attention.

92

Mitsuru KIKKAWA (mitsurukikkawa@hotmail.co.jp)

This File is available at

http://kikkawa.cyber-ninja.jp/index.htm

MITSURU KIKKAWA

http://kikkawa.cyber-ninja.jp/index.htm

PRELIMINARIES (EVOLUTIONARY GAME THEORY)

Situation (Traditional Evolutionary Game Theory)

Situation (Traditional Evolutionary Game Theory)

Another players look at the game.

Situation (Traditional Evolutionary Game Theory) At Random (infinitely)

97

Situation (Traditional Evolutionary Game Theory) At Random (infinitely)

Situation (Traditional Evolutionary Game Theory) At Random (infinitely)

REPLICATOR EQ.
$$x_i = x_i ((Ax)_i - x \cdot Ax), i = 1, \cdots, n.$$

If the player's payoff from the outcome i is greater than the expected utility x Ax, the probability of the action i is higher than before.

REPLICATOR EQ.
$$x_i = x_i ((Ax)_i - x \cdot Ax), i = 1, \cdots, n.$$

If the player's payoff from the outcome *i* is greater than the expected utility *x Ax*, the probability of the action *i* is higher than before. And this equation shows that the probability of the action *i* chosen by another players is also higher than before (**externality**).

REPLICATOR EQ.
$$x_i = x_i ((Ax)_i - x \cdot Ax), i = 1, \cdots, n.$$

If the player's payoff from the outcome i is greater than the expected utility x Ax, the probability of the action i is higher than before. And this equation shows that the probability of the action i chosen by another players is also higher than before (**externality**). Furthermore, the equation is derived uniquely by the **monotonic** (that is if one type has increased its share in the population then all types with higher profit should also have increased their shares).

102

REPLICATOR EQ.
$$x_i = x_i ((Ax)_i - x \cdot Ax), i = 1, \cdots, n.$$

If the player's payoff from the outcome *i* is greater than the expected utility *x Ax*, the probability of the action *i* is higher than before. And this equation shows that the probability of the action *i* chosen by another players is also higher than before (**externality**). Furthermore, the equation is derived uniquely by the **monotonic** (that is if one type has increased its share in the population then all types with higher profit should also have increased their shares).

103

Two
Strategies
(i) Non-dilemma:
$$a > 0. b < 0, ESS : one$$

(ii) Prisoner's dilemma: $a < 0. b > 0, ESS : one$
(iii) Coordination : $a>0, b>0, ESS : one$
(iii) Coordination : $a>0, b>0, ESS : one$
(iv) Hawk-Dove : $a<0, b<0, ESS one (mixed)$
S 1 S 2
S 1 A, A 0, 0
S 2 0, 0 b, b
Payoff Matrix

EVOLUTIONARY STABLE STRATEGY (ESS)

104

DEF. Weibull(1995): $x \in \Delta$ is an $y \neq x$ *evolutionary_stable strategy (ESS)* if for every strategy $\varepsilon_y \in (0,1)$ there exists some $\varepsilon \in (0, \varepsilon_y)$ such that the following inequality holds for all $u[x, \varepsilon y + (1 - \varepsilon)x] > u[y, \varepsilon y + (1 - \varepsilon)x].$

EVOLUTIONARY STABLE STRATEGY (ESS)

105

DEF. Weibull(1995): $x \in \Delta$ is an $y \neq x$ *evolutionary_stable strategy (ESS)* if for every strategy $\varepsilon_y \in (0,1)$ there exists some $\varepsilon \in (0, \varepsilon_y)$ such that the following inequality holds for all $u[x, \varepsilon y + (1 - \varepsilon)x] > u[y, \varepsilon y + (1 - \varepsilon)x].$

INTERPRETATION: incumbent payoff (fitness) is higher

than that of the post-entry strategy

(ESS : 1) the solution of the Replicator equation + 2) asymptotic stable.)

PROPOSITION

PRO.(Bishop and Cannings (1978)): $x \in \Delta$ is evolutionary stable strategy if and only if it meets these first-order and second-order best-reply :

PROPOSITION

PRO.(Bishop and Cannings (1978)): $x \in \Delta$ is evolutionary stable strategy if and only if it meets these first-order and second-order bestreply: Nash Eq. (2.4) $u(y,x) \leq u(x,x), \quad \forall y, \leftarrow$ u(y, x) = u(x, x) $\Rightarrow u(y, y) < u(x, y),$ (2.5) $\forall v \neq x,$

PROPOSITION

PRO.(Bishop and Cannings (1978)): $\chi \in \Delta$ is evolutionary stable strategy if and only if it meets these first-order and second-order bestreply: Nash Eq. (2.4) $u(y,x) \leq u(x,x), \quad \forall y,$ u(y, x) = u(x, x) $\Rightarrow u(y, y) < u(x, y),$ (2.5) $\forall v \neq x,$ Asymptotic Stable Conditon